Search results for "brain connectivity"

showing 10 items of 11 documents

Deriving electrophysiological brain network connectivity via tensor component analysis during freely listening to music

2020

Recent studies show that the dynamics of electrophysiological functional connectivity is attracting more and more interest since it is considered as a better representation of functional brain networks than static network analysis. It is believed that the dynamic electrophysiological brain networks with specific frequency modes, transiently form and dissolve to support ongoing cognitive function during continuous task performance. Here, we propose a novel method based on tensor component analysis (TCA), to characterize the spatial, temporal, and spectral signatures of dynamic electrophysiological brain networks in electroencephalography (EEG) data recorded during free music-listening. A thr…

tensor decompositionQuantitative Biology::Neurons and CognitionComputer Science::Soundsignaalinkäsittelyfrequency-specific brain connectivitymusiikkifreely listening to musicoscillatory coherenceelectroencephalography (EEG)EEGkuunteleminen
researchProduct

Synergetic and redundant information flow detected by unnormalized Granger causality: application to resting state fMRI

2015

Objectives: We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. Methods: The presence of redundancy and/or synergy in multivariate time series data renders difficult to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently we introduce a pairwise index of synergy which is zero when two in…

FOS: Computer and information sciencesgranger causality (GC)Multivariate statisticsComputer scienceRestComputer Science - Information TheoryBiomedical EngineeringsynergyFOS: Physical sciencescomputer.software_genre01 natural sciences03 medical and health sciences0302 clinical medicineGranger causality0103 physical sciencesConnectomeRedundancy (engineering)HumansBrain connectivityTime series010306 general physicsModels StatisticalHuman Connectome ProjectResting state fMRIredundancybusiness.industryInformation Theory (cs.IT)functional magnetic resonance imaging (fMRI)BrainPattern recognitionComplex networkMagnetic Resonance ImagingVariable (computer science)Physics - Data Analysis Statistics and ProbabilityQuantitative Biology - Neurons and CognitionFOS: Biological sciencesSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaPairwise comparisonNeurons and Cognition (q-bio.NC)Artificial intelligenceData miningNerve Netbusinesscomputer030217 neurology & neurosurgeryData Analysis Statistics and Probability (physics.data-an)
researchProduct

Técnicas de análisis de posproceso en resonancia magnetica parael estudio de la conectividad cerebral

2011

Brain connectivity is a key concept for understanding brain function. Current methods to detect and quantify different types of connectivity with neuroimaging techniques are fundamental for understanding the pathophysiology of many neurologic and psychiatric disorders. This article aims to present a critical review of the magnetic resonance imaging techniques used to measure brain connectivity within the context of the Human Connectome Project. We review techniques used to measure: a) structural connectivity b) functional connectivity (main component analysis, independent component analysis, seed voxel, meta-analysis), and c) effective connectivity (psychophysiological interactions, causal …

Voxel based morphometryRMfResonancia MagnéticaConectomaMétodosIndependent component analysisBrain functionArticleStructural equation modelingConectividad cerebralFunctional connectivityMagnetic resonance imagingConnectomeMethodsImage Processing Computer-AssistedHumansRadiology Nuclear Medicine and imagingBrain connectivityICAEffective connectivityBrain functionPhysicsConectividad FuncionalFunctional connectivityStructural connectivityBrainConectividad EfectivaNuclear magnetic resonance imagingMeta-analysisFMRIFISICA APLICADAMeta-AnalisisMeta analisisHumanitiesPsychophysiology
researchProduct

Critical comments on EEG sensor space dynamical connectivity analysis

2019

Many different analysis techniques have been developed and applied to EEG recordings that allow one to investigate how different brain areas interact. One particular class of methods, based on the linear parametric representation of multiple interacting time series, is widely used to study causal connectivity in the brain. However, the results obtained by these methods should be interpreted with great care. The goal of this paper is to show, both theoretically and using simulations, that results obtained by applying causal connectivity measures on the sensor (scalp) time series do not allow interpretation in terms of interacting brain sources. This is because (1) the channel locations canno…

FOS: Computer and information sciencesComputer scienceSocial SciencesTransfer functionStatistics - Applications050105 experimental psychology03 medical and health sciences0302 clinical medicinegranger causalityMVARHumansApplications (stat.AP)Computer Simulation0501 psychology and cognitive sciencesRadiology Nuclear Medicine and imagingBrain connectivityEEGTime domainSpurious relationshipRepresentation (mathematics)Mixing (physics)Parametric statisticsBrain MappingRadiological and Ultrasound TechnologySeries (mathematics)05 social sciencesbrain connectivitysource modellingElectroencephalographyNeurologyFOS: Biological sciencesFrequency domainQuantitative Biology - Neurons and CognitionSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causalityDirected transfer functionNeurons and Cognition (q-bio.NC)Neurology (clinical)AnatomyAlgorithm030217 neurology & neurosurgery
researchProduct

Robust estimation of partial directed coherence by the vector optimal parameter search algorithm

2009

We propose a method for the accurate estimation of Partial Directed Coherence (PDC) from multichannel time series. The method is based on multivariate vector autoregressive (MVAR) model identification performed through the recently proposed Vector Optimal Parameter Search (VOPS) algorithm. Using Monte Carlo simulations generated by different MVAR models, the proposed VOPS algorithm is compared with the traditional Vector Least Squares (VLS) identification method. We show that the VOPS provides more accurate PDC estimates than the VLS (either overall and single-arc errors) in presence of interactions with long delays and missing terms, and for noisy multichannel time series. ©2009 IEEE.

Mathematical optimizationMultivariate statisticsNeuroscience (all)Parameter search algorithmComputer scienceEstimation theoryMonte Carlo methodSystem identificationPartial directed coherenceBiomedical EngineeringAC powerAutoregressive modelSearch algorithmVector autoregressive modelSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaCoherence (signal processing)Brain connectivityNeurology (clinical)Algorithm
researchProduct

On the interpretability and computational reliability of frequency-domain Granger causality

2017

This Correspondence article is a comment which directly relates to the paper “A study of problems encountered in Granger causality analysis from a neuroscience perspective” (Stokes and Purdon, 2017). We agree that interpretation issues of Granger causality (GC) in neuroscience exist, partially due to the historically unfortunate use of the name “causality”, as described in previous literature. On the other hand, we think that Stokes and Purdon use a formulation of GC which is outdated (albeit still used) and do not fully account for the potential of the different frequency-domain versions of GC; in doing so, their paper dismisses GC measures based on a suboptimal use of them. Furthermore, s…

FOS: Computer and information sciences0301 basic medicineTheoretical computer scienceImmunology and Microbiology (all)Computer scienceTime series analysiMathematics - Statistics TheoryStatistics Theory (math.ST)Statistics - ApplicationsGeneral Biochemistry Genetics and Molecular BiologyMethodology (stat.ME)Causality (physics)03 medical and health sciences0302 clinical medicinegranger causalityGranger causalityCorrespondenceFOS: MathematicsApplications (stat.AP)Physiological oscillationGeneral Pharmacology Toxicology and PharmaceuticsTime seriessignal processingStatistical Methodologies & Health Informaticsfrequency-domain connectivityReliability (statistics)Statistics - MethodologyInterpretabilityGranger-Geweke causalityBiochemistry Genetics and Molecular Biology (all)Interpretation (logic)General Immunology and Microbiologybrain connectivityGeneral MedicineArticlesvector autoregressive models030104 developmental biologyMathematics and StatisticsWildcardVector autoregressive modelPharmacology Toxicology and Pharmaceutics (all)Frequency domaintime series analysisspectral decompositionSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaBrain connectivity; Directed coherence; Frequency-domain connectivity; Granger-Geweke causality; Physiological oscillations; Spectral decomposition; Time series analysis; Vector autoregressive models; Biochemistry Genetics and Molecular Biology (all); Immunology and Microbiology (all); Pharmacology Toxicology and Pharmaceutics (all)directed coherence030217 neurology & neurosurgeryphysiological oscillations
researchProduct

Multivariate autoregressive model with instantaneous effects to improve brain connectivity estimation

2009

Multivariate autoregressive models brain connectivity
researchProduct

Dynamic Community Detection for Brain Functional Networks during Music Listening with Block Component Analysis

2023

Publisher Copyright: Author The human brain can be described as a complex network of functional connections between distinct regions, referred to as the brain functional network. Recent studies show that the functional network is a dynamic process and its community structure evolves with time during continuous task performance. Consequently, it is important for the understanding of the human brain to develop dynamic community detection techniques for such time-varying functional networks. Here, we propose a temporal clustering framework based on a set of network generative models and surprisingly it can be linked to Block Component Analysis to detect and track the latent community structure…

Brain modelingmodule detectionBiomedical EngineeringTensorsblock term decompositiondynamic community detectiontensor decompositiontensorsInternal MedicineAnalytical modelsgenerative modelHidden Markov modelsaivotutkimusEEGhidden Markov modelsGeneral Neurosciencefeature extractionbrain connectivityRehabilitation3112 Neurosciencesanalytical modelsElectroencephalographybrain modeling113 Computer and information sciencesTask analysistask analysisFeature extractionaivotelectroencephalography
researchProduct

Assessing connectivity in the presence of instantaneous causality

2014

This chapter is devoted to a discussion of the impact of instantaneous causality on the computation of frequency domain connectivity measures. Instantaneous causality (IC) refers to interactions between two observed time series which occur within the same time lag.

Causality (physics)Computer scienceEconometricsBrain connectivity causality
researchProduct

Pre- and post-ictal brain activity characterization using combined source decomposition and connectivity estimation in epileptic children

2019

In this research, the study of functional connectivity between sources of electroencephalogram (EEG) activity assessed for different classes (well before seizure, preictal and post-ictal) was performed. EEG recordings were acquired from 12 subjects with focal epilepsy. Then, ten common spatial patterns (CSP) were obtained for EEG segments describing 95% of Riemannian distance between pairs of classes, followed by estimation of multivariate autoregressive (MVAR) models’ coefficients. The MVAR models were further used to extract coherence as a functional connectivity measures. Our results show that the coherence between CSP sources differs between baseline and pre-ictal segments: it has the l…

Multivariate statisticsepilepsy epileptic seizures EEG brain connectivity common spatial patterns VAR model ICAmedicine.diagnostic_testComputer sciencebusiness.industryBrain activity and meditationPattern recognitionCoherence (statistics)Electroencephalographymedicine.diseaseSettore ING-INF/01 - ElettronicaEpilepsyAutoregressive modelSettore ING-INF/06 - Bioingegneria Elettronica E InformaticamedicineIctalArtificial intelligencebusinessPre and post
researchProduct